Géométrie analytique plane

EXGAP036

MONS - Questions types 2000, 2001

Exercice précédent Exercice suivant Liste des exercices de cette catégorie Liste des exercices. Page d'acceuil

Soit l'espace euclidien E², muni d'une origine O  et d'un repère orthonormé xy.
a) Soit une parabole d'axe de symétrie Ox.  Cette parabole passa par l'origine et par le point P (1,1).
Déterminer l'équation de la tangente en P  à la parabole.
b) Dans l'ensemble des circonférences de centres ( a,0 ) et de rayons a,  est-il possible d'en trouver une qui coupe orthogonalement la parabole ?
NB :
a) a  est un paramètre.
b) Deux courbes se coupent orthogonalement si leurs tangentes au point commun sont perpendiculaires entre elles.



EXGAP036gr001.gif

EXGAP036eq01.gif