The
Halogens

The physical properties of fluorine, chlorine, bromine and iodine
are presented in concise graphs. Scores of experimental
determinations plus theoretical correlations are consolidated in one handy spot.
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About the New Series

This is the first of a series of articles that will
bring together a wealth of literature data on
the physical and thermodynamic properties of
important industrial chemicals.

Most data will be presented on large, easy-to-
use graphs. Included with the graphs is a key that
allows the user to tell at a glance just what por-
tion of ecach curve is obtained from experi-
mentation, and what portion is deduced from the-
oretical correlations.

Extensive documentation will be provided. Ref-
erences will be numbered consecutively through-
out the series in a running bibliography. The cor-
relations used to extrapolate experimental data
are briefly explained. Margins of statisiical accu-
racy are noted where possible.

The first half of the series will cover inorganic
materials. In addition to the halogens of (his

The Halogens

Physical and thermodynamic property data for the
halogcns-——l‘hzorine, chlorine, bromine and iodine—are of
special value to engineers in the chemical process indus-
tries (CPI). The design and selection of process equipment
often requires knowledge of such properties as vapor
pressure, critical values, latent heat, heat capacity, density
and viscosity,

For the sake of simplicity, all curves relate a specific
property to temperature only. Pressure parameters are
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article, upcoming installments will deal with:

u Nitrogen oxides (N,0, NO, NO.,).
B Suliur oxides (S0,, SO,).

® Carbon oxides (CO, CO,),

B Diatomic gases (H,, O,, N,).

B Halogen acids.

B Inert gases.

B Ammonia and hydrazine.

B Major non-halogen acids.

® Prominent ammonia derivatives.
B Hydrogen oxides.

® Others.

The second half will cover selected organics—
tentatively including olefins, alcohols, acids, or-
ganic chlorides, amines, aldehydes, ketones, aro-
matic compounds, nonaromatic cyclic compounds
and others.

omitted, and in the case of liquid properties above the
normal boiling point. data are limited to the saturation
line, This should satisfy the majority of applications. All
curves are calibrated in English and metric units,

Explanations of theoretical correlations and average
deviations for the data investigated follow.

Critical Values—Table 1—|

Critical temperature, pressure and volume have been
determined experimentally [1,2,4.9,/0,13,14,43] for fluo-
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rine [64], chlorine [6]], bromine [28] and iodine [28]. The
reported values are in agreement with only 3% spread.
Exceptions to this degree of accuracy are the critical
pressure of fluorine, critical volume of bromine, and the
critical temperature of iodine. In these latter examples,
the deviation is 8-12%.

Heat of Vaporization—Fig. 1—1

The Watson correlation [/3,74] was used to augment
experimental.data over the complete liquid state:

AH, _(n-r)'*
A, \T.-T,

(-1

where the exponent n may vary slightly with different
substances, but in general yields accurate results with a
value of n = 0.38.

Vapor Pressure—Fig. 1—2

Correlated data use the Cex-Antoine type relation:

log P, = A — B/(T + C) (1—2)

where 4, Band C are constants for a particular substance
and are determined from experimental data. The agree-
ment of both the data from the various sources and the
correlation is generally good; deviations from the least-
squares fit are less than 5% in most cases.

Heat Capacity—Fig. 1-3, 1—4

Vapor heat capacity data at constant atmospheric pres-
sure (for the ideal gas state) are based primarily on spec-
troscopic and molecular structure determinations. In
general, data agreement is good between the various
sources, with differences being less than 3%.

In the case of liquid-heat-capacity (at constant pres-
sure), the data for fluorine cover the full liquid state. For
chlorine [43,6/,72] and bromine [51], the temperature
range has been extended over the full liquid state by
differentiating enthalpy-temperature data. For iodine, the
liquid heat capacity has been extrapolated using the rela-
tionship:

C,xp*=C (1—3)

where the exponent, », is determined from experimental
data. With n = %, the relationship has shown very good
agreement with experimental heat capacities for fluorine
(30 data points) and chlorine (10 data points) at only 5%
deviation. The extrapolated liquid heat capacities are
considered reasonably accurate up to about 80% of the
critical temperature. ;

Density—Fig. 1—5

For chlorine and bromine respectively, temperature
ranges for experimental density data are: —70°C to the
critical temperature, and from room temperature to criti-
cal. The data were extrapolated to account for density at
the melting point. Agreement between the various sources
is very good, with only a 3% spread.
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Surface Tension—Fig. 1—6

To supplement experimental data, surface tension over

the full liquid state was determined from the Othmer [53] -

linear relationship, which equates the log surface tension
with the log critical temperature difference:

logo=A+ Blog(T, - T) (1—4)

A straight line was obtained for the data. Comparison of
the computed values with experimental data indicated
agreement with only 2% variation for fluorine, bromine
and iodine. The variation is less than 3% in the case of
chlorine (16 data points).

Viscosity—Fig. 1—7, 1—8

Vapor viscosity over the expanded temperature range
was estimated with the Sutherland relation [/4]:

po = BTYVE/(S + T)

A straight line was obtained for each halogen upon plot-
ting the ratio 7%%/p,, versus T, from which the slope and
“Sutherland constant” intercepts were determined. Com-
parison with the estimates of Svehla [/8] show close
agreement. Comparison with available data indicate de-
viations from the least-squares fit of less than 2% for
fluorine and chlorine.

Liquid-viscosity was also examined. Upon plotting the
data, a straight line for each halogen was obtained for
the log viscosity versus reciprocal temperature in accord-
ance with the Guzman-Andrade relationship [/3,14]:

log jy, = A + (B/T) (1-6)

Deviations were only 2.1% for fluorine, 2.5% for chlorine,
and 2% for bromine.

1-5)

Thermal Conductivity—Fig. 1—9, 1—-10

Thermal conductivity for the vapor has been experi-
mentally measured at low pressures by Franck et al.
[36,37). Additional data for the expanded temperature
range were determined from the method of Schaefer and
Thodos [14,65], which is based on the corresponding-states
behavior and which utilizes the original data of Franck
for the correlation constants. Using this method, the ther-
mal conductivity at atmospheric pressure is given in a
graphical presentation as a function of temperature, criti-
cal temperature and critical conductivity. Agreement with
experimental data shows 3.2% maximum deviation [65].
Comparison of the results with other estimation methods
indicate an average of 2 to 13% variation for Svehla [/8]
and 1 to 8% for Liley [19,44]. .

Liquid-thermal-conductivity data were not identified in
the literature screening for fluorine, chlorine and iodine,
One source was identified for bromine [63] for data in
the 10 to 50°C range. Data for the remaining halogens
over the full temperature range were determined by the
corresponding-states method of Schaefer and Thodos
[14,65]. Average error of 7% was indicated for bromine,
Precise accuracy of the values over the full temperature
range is not known.

(Continues through p. 78.)
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How To Use the Graphs

Each graph is outfitted with a key that
lists references and explains just what part
of the curve is determined experimentally,
and what part is estimated from theoretical
correlations.

The shaded squares denote the following:

# Data in this region are experimentally
known.

[@ Experimental and correlated data used.
O All data in this region are correlated.

The ‘‘regions” referred to are the tem-
perature ranges between the melting, boil-
ing and critical points (m.p., b.p. and c.p.,
respectively), orin some cases, the specific
temperatures noted in the key.

Physical Properties of the Halogens

Table I—I
Fluorine, Chlgrine, Bromine, lodine,

Identification Fa Cli, Bry Iz
State (std. conditions) Gas Gas Liquid Solid
Molecular weight 38.00 70.91 159.8 253.8
Boiling point,“C -188.1 ~ 34.06 58.78 184.4
Melting point, °C -219.6 -101.0 -~ .20 113.6
Critical temp., °C -129.0 1440  315.0 546.0
Critical pressure, atm 53.0 773 1020 116.0
Critical volume,

cm? /g-mol 66.0 1245 127.0 1550
Critical compressibility

factor, Z_ 0.296 0.281 0.269 0.268

Vapor Pressure—Fig. 1-2 —=

Temperature Range Temperature Range
Fig. Fig. :
11 mp.~bp. | bp-cp References 1-2 m.p.-bp | bp-cp. References
Fluptine 4 Id 1,4,9,10,14,43,70 Fluorine B 5 19, 22, 45,52, 84,72
Cintarive g a 1,9,14,30,43, 710 Chloring ] “ 5, 19,45, 52
Broimine 7] a 1,4,9,14,43,70 Bromine B I 4 5,40, 45,52
ladine ' 7| @ |14.8.436270 lodine ] l d |25

.I.allmalow data [] Laburatory plus correlations

Heat of Vaporization—Fig, 1-1

[ An corretated data

B8 Laboratory data

Temperature, °F

100 200

300

-200 -100 0
100

80

60

40

Heat of vaporization, cal/g

20

-100 0

100

200

400

500

600 700 800
60
40
F
20 &
0

-220 -200 -180 ~160 -140 -120
Temperature, ‘c

300 400

Temperature, °C

ﬂ Laboratary plus correlations

D All correlated data

900 1,000 1,100

160

120

Btu/lb

80

40

500 600

JUNE 10, 1974/CHEMICAL ENGINEERING




P e AT o bt Ao b S5 i S S A RS i A5 L i s Bt M N e b AL RSN LA Wl L S 0 B e IR 0 0T U T SRl 0 e

Temperature, °F
-100 0 100 200 300 400 500 600 700 800 900 1,000

10°
X
10°
10¢
102
10°
o
e o
£
™~
5 10 £
Q.* :§
@ K.}
2 &
4
]
+ &
o
>
10?
1.0
~ :
10
0.1

=225 =200 =175 -150 -125
Temperature, °C

-100 0 100 200 300 400 500 600
' Temperature, °C

CHEMICAL ENGINEERING/JUNE 10, 1974 73




THE HALOGENS . . .

Temperature, °F
-400 -200 0 200 400 600 800 1,000 1,200 1400 1,600 1800 2,000 2,200

0.25 3 0.25
e F2
S 0.20 0.20
=
3

™
© o : 0.15 =
Z Cl, s
(5] e
a ; 3
8 / @
+ '0.10 - 0.10
8
L
-
§ Br,
T, Rl 0.05
” I
f ) -200 0 200 400 600 800 1,000 1,200

Temperature, °C

Vapor Heat Capacity--Fig. 1-3
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Liquid Heat Capacity—Fig. 1—4
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