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Olefin monomers:

1sobutylene and
styrene

Various carrelations and data provide extensive results of the
physical and thermodynamic properties for the major olefin
polymers, isgbutylene and styrene, over a wide temperature range.

Carl L. Yaws, Lamar University *

[] Isobutylene and styrene are of major importance to
the chemical process industries, especially as primary
olefin monomers for the production of sundry polymers.
Isobutylene finds effective use in organic synthesis,
and in the production of high-octane aviation gasoline.
However, its primary usage is as a monomer for making
pelymers such as butvl|rubber and copolymer resins.
The major application fpr styrene is also as a monomer
for polymers. For example, such polymers are conven-
tional polystyrene, impact polystyrene, styrene-acrylo-
nitrilecopolvmer (SAN),lacrylonitrile-butadiene-styrene
terpolymer (ABS), and ftyrene-butadiene copolymer.

Table 17—1

Critical Properties

Data for the critical| temperature, critica! pressure
and critical volume are available in the literature [3,
4, 10, 417, 608, 613, 620). The reported values are in
close agreement. Deviations from the selected values are
0.1%, except for critical volume, which has a 0.6%
variation.

Heat of Vaporization—Fig. 17—1

The data for heats pf vaporization are based on
experimental data and Watson’s correlation (Eq. 1-1)}
for the completely saturated liquid phase.

Vapor Pressure—Fig. 17—2
Comprehensive vapor-pressure data for isobutylene
and styrene were extended with the Cox-Antoine rela-
tion (Eq. 1-2) to achieve|complete coverage of the satu-
rated liquid phase. The|lagreement among the various
*For biography of the author, jee Chem. Eng., May 12, 1975, p. 97.

T See Part 1 of this series for equations starting with a boldfaced numeral
“1", Part 2 for those with *2", efc. Table on p. 115 lists publication dates
of all previous articles in this serips.

data sources is close, and the deviations in rost cases
are less than 3%.

Heat Capacity—Fig. 17—3, 17—4

Results for the heat capacity of the ideal gas at at-
mospheric pressure are in substantial agreement among
the various sources. Average deviations are less than
0.1% for isobutylene and styrene.

Data for the heat capacity of the saturated liquid
were extended to cover the full liquid state by using
the extrapolation relationship for density (Eq. 1-3) with
n =1 and n = 1.5 for isobutylene and styrene, respec-
tively. Calculated values and experimental data com-
pared favorably. Average deviations were 1.1% for
isobutylene and 2.4% for styrene.

Density—Fig. 17—5

The modified Rackett correlation (Eq. 15-1) was
selected for extending laboratory and experimental
density data. The correlated values and experimental
data were extremely close. Average deviations were only
0.22% for both isobutylene and styrene.

Surface Tension—Fig. 17—6

The recent results of Jasper [79]; Kennedy and Kir-
shenbaum [620]; and Coulter, Kehde, and Hiscock
[620] were selected as the primary experimental data.
Surface-tension data were extended for the completely
saturated liquid-phase coverage with the Othmer rela-
tion (Eq. 15-2) with n = 1.23 for isobutylene and 0.484
for styrene. Computed values and experimental data
were very close. Average deviations were 0.7% and 0.3%
for isobutylene and styrene, respectively.
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OLEFIN MONOMERS

Physical properties of two
‘How To Use the Graphs inslor olefin Monomers Table |
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Viscosity—Fig. 174-7, 17—8

The modified Stiel
16-5a and 16-5b) was
phase viscosity data for
relation yielded values|that compared favorably with

the experimental data.

and Thodos correlation (Eq.
selected for extending the gas-
isobutylene. The modified cor-

Average deviations were 1.4%

for isobutylene.

The same correlation was adopted for estimating
gas-phase viscosity of styrene. Testing the correlation
[544] with aromatics (henzene, toluene) similar to sty-
rene produced favorable findings. Average deviations
were less than 1.6% for] the similar aromatics.

Liquid-viscosity datal were effectively extended with
the Guzman-Andrade relation (Eq. 1-6) for obtaining
full liquid-phase coverage. Two straight lines were
adopted for isobutylene¢, while only one was required
for styrene. Comparisor] of experimental and predicted
values produced deviatjons of 2.1% and 2.5% for iso-
butylene and styrene, respectively.

Thermal Conductivity—Fig. 17—9, 17—10

Thermal conductivity data for the gas phase at at-
mospheric pressure are available for isobutylene. The
Misic and Thodos correlption (Eq. 12-2a and 12-2b) was
effectively used to extend the data and to estimate values
for styrene. Correlated |values and experimental data
were in agreement. Average deviation was 3.83% for
isobutylene.

Liquid-thermal-conductivity values for isobutylene
and styrene were estimated with the Pachaiyappan and
Naidyanathan correlatipr (Eq. 16-7) at temperatures
(—30°C and 120°C, respectively) below the boiling
point of isobutylene and styrene. These values were
then extended with thg modified Stiel and Thodos
relation (Eq. 10-3). Application of this technique to
-imilar hydrocarbon compounds (olefins and aromatics

produced favorable agreement of predicted values and
experimental data. Average deviations were 5 to 10%.
The results for isobutylene and styrene are intended to
represent correct order-of-magnitude values.

Heat and Free Energy of Formation—
Fig. 17—11, 17—12

Results for heat of formation and free energy of
formation for the ideal gas are available from several

sources. The agreement is very good, with deviations
being less than 0.03 kcal /mol.
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