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Ethylene, propylene
and butylene oxides.

Major property data for three organic oxides
& are presented as part of our continuing series.

Carl L. Yaws and Mark P. Rackley, Lamar University

[ The organic oxides (ethylene, propylene and butyl-
ene oxide) are of significant economic importance. Pri-
mary use of ethylene oxide is for the production of
ethylene glycol and higher alcohols with a myriad of
uses (automotive antifreeze, explosives, resins, fibers,
rubbers, plasticizers, etc.). It is also an important inter-
mediate for pharmaceuticals, solvents and organic
synthetics.

Propylene oxide is consumed in large production
volumes for manufacture of urethane foams. Propylene
oxide derivatives are also used for agricultural chemi-
~=ls, textiles, cosmetics, petroleum, plastics, rubber and
. -ints. Butylene oxide is a specialty chemical having
anplication in polymers, detergents, lube additives and

itiles.

Critical properties—Table 19—1

Critical properties are experimentally available for
ethylene and propylene oxides [4,/0,413,653] and are in
close agreement. Critical properties for butylene oxide
are estimated by the Lydersen and Riedel relationships
(Eq. 16—1, 16—2 and 16—3 *). Testing of the estima-
tion relationships with ethylene and propylene oxides
produced fair agreement of theory and data. Deviations
of 0.1 to 2.3%, 5.8 t0 9.5% and 2.4 to 4.0% for critical
temperature, pressure and volume, respectively, were
encountered.

Heat of vaporization—Fig. 19—1

Heat of vaporization data in the region around the
boiling point were extended by means of Watson’s cor-
relation (Eq. 1—1). The results from the various sources
are in close agreement.

*See Part 1 of this senies for equations starting with a boldfaced numerai “1",

Part 2 for those with “2". etc. The footnote on p. 107 of the March 1, 1976 issue
is a guide to locating Parts | through 18.

Vapor pressure—Fig. 19—2

Extensive data were found for ethylene and propylene
oxide from the critical point to below the boiling point.
Vapor pressure data were correlated and extended using
the Cox-Antoine relation (Eq. 1—2). The deviations
were less than 1% in most cases.

Heat capacities—Fig. 19—3, 19—4

Ideal gas heat-capacities are available for ethylene
and propylene oxide. The agreement of results is good
among the several sources, with average deviations
being less than 1%.

In the absence of data, ideal gas heat-capacities for

_butylene oxide were estimated with the Rihani and

Doraiswamy method (Eq. 18—1). Testing of the esti-
mation method with the available data for ethvlene
and propylene oxide produced favorable comparisons
with average deviations of 0.3% and 3.7%.

For ethylene and propylene oxide, liquid heat capac-
ity data were extended with the density relation (Eq.
1—3, n = 1). Tests of the relation with the available
data produced valid results with average deviations of
only 4.4% and 2.5% for ethylene and propvlene oxide.

Liquid heat capacity for butylene oxide at 20°C was
estimated with the Johnson and Huang method [/4]:

Cp=AC, + AC, + AC3 + --- AC, (19—1)

where Cp = liquid heat capacity at constant pressure,
cal/g-mol °K, and AC,, AC, . - . AC, = heat capacity

contribution of each atomic group, cal/g-mol K.
Values for AC,, AC,, etc, are available in Reid and
Sherwood [/4] for the various atomic groups (—CHj,
—CH,, —O—, etc.) making up the chemical com-
pound. Application of the method to ethylene and
Text continues on p. 137
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ORGANIC OXIDES

—
How To Use the Graphs Physical properties of the organic oxides  Table |

Ethylene Propylene Butylene
Each graph is outfitted with a key that lists references

Yl : ) oxide oxide oxide

and. explains just what part o.f the'curve is determmed_ex- \dentification C,H,0 ca“a” Caﬂsﬂ

perimentally, and what part is estimated from theoretical

correlations. State (std. conditions) gas liquid liquid
The shaded squares denote the following: Molecular weight, M 44 .05 58.08 72.10
! Data in this region are experimentally known. Boiling paint, T}, °C 10.55 34.1 63.2

Melting paint, Ty, °C  —112.5 -112.0 -150.0
4 Critical temp., 7, °C 195.8 209.1 252.6*

m Experimental and correlated data used.

D All data in this region are correlated.

Critical pressure, P, atm  70.97 48.6 43.3*
The *regions” referred to are the temperature ranges Critical volume, V, .
between the melting, boiling and eritical points (m.p., b.p. cm3/g-mol 140.3 186.0 248.5*

and c.p., respectively), or in some cases, the specific tem-

Critical compressibility
peratures noted in the key.

factor, Z, 0.259 0.228 0.250*

*Estimated
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ORGANIC OXIDES
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propylene oxide produced favorable agreement of esti-
mated and experimental data. Maximum variations of
1% and 4.9% were encountered.

The estimated value at 20°C for butylene oxide was
extended to lower temperatures by using the same gen-
eral shape of curves for ethylene and propyvlene oxide.
Extension to higher temperatures was achieved with the
density relation (Eq. 1—3. n = 1).

Density—Fig. 19—5

Liquid density data were extended with modified
Rackett correlation (Eq. 15—1) to attain complete cov-
erage of the saturated liquid phase. The correlation
values were extremely close, to experimental data; aver-

age deviations were less than 0.5% for each organic
oxide.

Surface tension—Fig. 19—6

Surface tension data for ethylene oxide were corre-
-lated and extended with the Othmer relation (Eq.

»—2, n = 1.19). Predicted and experimental values
were close with average deviations of less than 1%.

‘In the abscuce o ciperimental data, surface tension
values for propylene and butylene oxide were estimated
with the Brock and Bird correlation (Eq. 16—4). Test-
ing of the correlation with data for ethylene oxide
produced an average error of 3.7%.

Viscosity—Fig. 19—7, 19—8
Gas-phase viscosity values at atmospheric pressure for
each organic oxide were estimated with the Stiel and
Thodos correlation [/#] for polar compounds without
hydrogen bonding:
Z ~2/3

bo = =g —[1.907, — 0.29] /%

where p; = gas viscosity at low pressure (1 atm),
micropoise

(19—2)

¢ = correlation parameter, T,}/8/M1/2P2/3
Z, = critical compressibility factor
T, = reduced temperature, 7/7,

Unfortunately, experimental data are lacking for a
direct comparison of experimental and calculated re-
sults for the organic oxides. However, testing of the
correlation with similar compounds (14 different esters
and ethers) produced favorable comparison findings.
Average deviations between estimated values and ex-
perimental data were less than 3%.

The Guzman-Andrade relation (Eq. 1—86) for log of
viscosity versus reciprocal temperature was used to cor-
relate and extend liquid viscosity data. The relation
fitted the data quite adequately. Average deviations
between the relation and data were 4% or less.

Thermal conductivity—Fig. 19—9, 19—10
The Misic and Thodos correlation (Eq. 10—2) was
sclected for extrapolation of experimental gas-phase
thermal conductivity data for ethvlene oxide. In the
absence of experimental data, the same correlation was
used to estimate gas-phase thermal conductivities for
propylene and butylene oxide. The caiculated and ex-
perimental results were in general agreement. Average

deviations were 8.2%. Other correlations [/4] produced
greater deviations.

Liquid thermal conductivity values for each organic
oxide were estimated with the Pachaivappan and
Vaidyanthan correlation (Eq. 16—7) at room tempera-
ture. These values were then extended with the modi-
fied Stiel and Thodos relation (Eq. 10—3) to achieve
full coverage of the saturated liquid phase.

Heat and free energy of formation—
Fig. 19—11, 19—12

Heat and free energy of formation of the ideal gas are
available for ethylene and propylene oxide. The results
from the several different sources agree. Average respec-
tive deviations are 0.1 and 0.36 kcal/mol.

In the absence of experimental data, heat and free
energy of formation were estimated with the modified
Verma and Dorsiswamy method (AH,, Eq. 18—2) and
Van Krevelen correlation (AF;, Eq. 18—3). Application
of the two estimation techniques to ethylene and pro-
pylenc oxide produced agreement of calculated and
experimental results, Average deviations of 0.8 to 1.7%
and 4.8 to 5.1% were experienced.
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