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Methyl chloride, methylene
~chloride, chloroform and
carbon tetrachloride

This month’s segment presents physical and
thermodynamic data for these widely used chloromethanes.

Carl L. Yaws, Lamar University

[C] The chloromethanes are important to the chemical
process industries, Methyl chloride is used to manufac-

“ure silicones, butyl rubber, tetramethyl lead and cer-
tain specialty chemicals. Methylene chloride is a supe-
rior paint stripper for many industrial and home
applications; it is also used as a cleaning solvent and
heat-transfer medium. Chloroform and carbon tetra-
chloride are the basic feedstocks for producing air-con-
ditioning refrigerants and aerosel propellants; they also
contribute to making general-purpgse,solvents and spe-
cialty chemicals.

Critical Properties—Table 21—1

Experimental data on critical properties are available
for all the chloromethanes [4416,418,574,637,646,693,
706,708.712,715,717,718,721] except methylene chlo-
ride, for which data on critical volume are not obtain-
able. There is good agreement among the selected re-
ported values. Average deviations proved to be 0.31,
0.34 and 1.3% for critical temperature, pressure and
volume,

Critical volume for methylene chloride was estimated
by the Lydersen method (Eq. 16—3)* Applying the
method to other chloromethanes produced favorable

agreement between predicted and experimental values.
Average deviations were less than 1.7% for methyl chlo-
ride, chloroform and carbon tetrachloride.

Heat of Vaporization—Fig. 21—1

Experimental data for heat of vaporization were
extended with the Watson correlation (Eq. 1—1) to
achieve full coverage of the liquid phase. Results from
the various sources agree closely; deviations in most
cascs are less than 1%.

Vapor Pressure—TIig. 21—2
Extensive vapor-pressure data for each chlorometh-
ane were correlated over the entire saturated-liquid

-
.

range with the Cox-Antoine relation (Eq. 1—2). Results

[from the various investigators are in close agreement.

Heat Capacity—Fig. 213, 21—4
Heat capacity data for the ideal gases at low pressure
are available for each chloromethane. The recent results
(text continues on p. 69)

*See Part 1 of this series for equations starting with a boldfaced numeral 17,
Part 2 for those with “27, etc, Table on p. 115 of the Jan, 19, 1976 issue (Part
17) lists publication dates of parts 1 through 16, Parts 18, 19 and 20 appeared
in the Mar. 1, Apr. 12 and June 7 issues.
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CHLOROMETHANES
How To Use the Graphs Physical properties of the chloromethanes Table |
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. : - Methyl Methylene Carhon
Each graph is outfitted with a key that lists references chloride chloride Chloroform tetrachloride
and explains just what part of the curve is determined ex- ldentification CH3Cl  CH,Cl, | CHClg CCl4
perimentally, and what part is estimated from theoretical . o P N
correlatianst State (std. conditions) ~ Gas  Liguid  Liquid  Liquid
The shaded squares denote the following: Molecylar weight, M 50.49 84.93 1139.4 153.8
& Boiling point, T, °C -238 39.8 . k3 16.7
] in thi i i t k 2
Data in this region are experimentally known Melting point, Ty, °C  ~97.7 867 832 —278
Experimental and correlated data used. Critical temp., 7.,,°C . #43.1 2.0 263.4 283.2
D All data in this region are correlated. Critical pressure, £, atm 659 60.5 54.0 45.0
* Critical volume, V,
The *‘regions” referred to are the tempearature ranges cm3/g-mol 139‘1_ 193.0* 240.0 275.0
between the melting, boiling and critical points (m.p., b.p. Critical compressibility
and c.p., respectively}, or in some cases, the specific tem- factor, Z, 0.268 0.277* 0.294 0.2711
peratures noted in the key,
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CHLOROMETHANES
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of Zwolinski et al. [727] were chosen. Data from the
different sources agree closely, with average deviations
of only 0.4, 145, 0.4 and 0.3% for methyl chloride,
methylene chloride, chloroform and carbon tetrachlo-
ride.

Liquid heat capacities for cach chloromethane were
extrapolated with the density-heat capacity relationship
(Eq. 13, n = 1), Average deviations of extrapolated
values from the data were 4.6, 3.6, 2.5 and 1.8% for the
four chloromethanes.

Density—Fig. 21—5 _

Liquid densities for the chloromethanes were corre-
lated with the modified Rackett equation (Eq. 15—1).
Deviations between calculated and experimental values
were small—less than 1%.

Surface Tension—Fig, 21—6

Surface tension data were augmented with the
Othmer relation (Eq. 15—2, n = 1.23, 1.23, 1.17 and
1.22 for methyl chloride, methylene chloride, chloro-
'orm and carbon tetrachloride). Calculated values de-
viated from experimental ones on the average by less
than 1%. »

Viscosity—Fig, 21—7, 21—8

The results of Touloukian et al. [703], Landbolt-
Bornstein |637] and Golubev [467] were the primary
cdata sources for gas-phase viscosities at low pressure. At
high temperatures, a modified Stiel and Thodos equa-
tion (Eq. 19—2) was adopted. Deviations between cal-
culated and experimental values were 1.4, 0.6, 1.2 and
1.3% for methyl chloride, methylene chloride, chloro-
form and carbon tetrachloride.

The Guzman-Andrade relation (Eq. 1—6) was used
to supplement experimental liquid viscosities. Devia-
tions between correlated values and experimental ones
averaged less than 2.5%.
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Thermal Conductivity—Fig. 21—9, 21—10

Gas-phase thermal conductivities at low pressures
were correlated with the Misic and Thodos equation
(Eq. 10—2). The correlated results agreed with experi-
mental data. Average deviations were 2.7, 5.8, 3.9 and
4.5% for methyl chloride, methylene chloride, chloro-
form and carbon tetrachloride.

The investigations of Touloukian et al. [/9] and
Landbolt-Bornstein [637] were primary sources for lig-
uid thermal conductivities. The data were extended
with a modified Stiel and Thodos equation (Eq. 10—3)
to cover the entire saturated-liquid phase. Correlated
values agreed well with the available data. Average
deviations from the experimental data points were 2%
or less for the four chloromecthanes.

Heat and Free Energy of Formation—
Fig. 21—11, 21—12

The findings of Rodgers et al. [727] were consulted
for the heats and free energies of formation of the ideal

‘gases. Results from the various contributors are consist-

ent, with deviations of 1 kcal/mol or less in most cases.
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