Physical Properties of Hydrocarbons

Part 44—Sulfur-Containing Hydrocarbons

This is the final part in a long running, very popular series. The end of the article contains a complete index to all 44 parts—the series having started in July 1965

Robert W. Gallant

The Dow Chemical Co., Plaquemine, La.

CARBON DISULFIDE has been a major chemical for many years. In 1968, about 800 million pounds were consumed. Two-thirds of this was in viscose rayon and cellophane production. Most of the rest was used to produce carbon tetrachloride. Neither of these outlets appear to provide much future growth for carbon disulfide. The major manufacturing route is to react methane and sulfur vapor at 900° C.

Methanethiol is produced from methanol and hydrogen sulfide. It is used in production of methionine, jet fuels and fungicides.

Dimethyl sulfide and ethanethiol are well-known to most engineers as odorants in fuel gases. They are also used as intermediates and solvents.

The physical properties of all four compounds have been extensively studied by various investigators.

Vapor Pressures and Critical Properties. The critical properties and vapor pressures of methanethiol, 1,2,3,4 ethanethiol,1,3,5 dimethyl sulfide1,3,6/7 and carbon disulfide1.8,9 have been experimentally determined.

Heat of Vaporization. O'Brien and Alford have measured the heat of vaporization of carbon disulfide from 0° C to the critical point.8 The value at the boiling point is reported for the other three compounds.4,5,6,7 Kharbanda's nomograph was used to estimate the heat of vaporization at other temperatures.10 Comparison with five experimental values showed an average error of 2.9 per-

Heat Capacity. The vapor heat capacities are reported in the literature for all four compounds.5,6,11,12,13

Liquid heat capacity data are available from the melting point to the boiling point for all four compounds.4,5,6,14 The data were extended by the equation,

TABLE 44-1-Physical Properties of Sulfur-Containing Hydrocarbons

	Bolling Point, °C	Melting Point, °C	Mole- cular Weight	Critical Properties		
				T.	P _e psia	d _e g/ml
Methanethiol Ethanethiol Dimethyl Sulfide. Carbon Disulfide.	5.96 34.4 37.3 46.2	-123.0 -147 - 98.3 -112	48.102 62.13 62.13 76.143	196.8 225.5 229.9 273	1050 795 801 1105	0.323 0.301 0.306 0.368

heat capacity times the cube root of the density equals a constant. The heat capacities of these compounds change very slowly with temperature. Consequently, better accuracy was obtained by using the cube root of the density in the equation. The average error for 10 points was 1.3 percent.

Density. The densities from 0°C to the critical points have been measured for all four compounds.1,3,8,15

Viscosity. The vapor viscosities were estimated by the method proposed by Bromley and Wilkes.16

Liquid viscosity data are available for ethanethiol at 25° C;1 for dimethyl sulfide from 0-36° C;1 and from -13° C to +46° C for carbon disulfide. 1,3 Souder's method was used to estimate the viscosities at other temperatures.17 The constant in the equation was calculated from an experimental data point for all but methanethiol. The constant had to be estimated from the molecular structure for methanethiol. The probable error is 5-10 percent.

Surface Tension. The International Critical Tables1 and Timmermans³ report viscosity data from 0 to 60° C for the compounds. The data were extended over the -80 to +120° C range by the equation, surface tension equals a constant times the density raised to the fourth power. The error should be about 2 percent.

Thermal Conductivity. The thermal conductivities were estimated by the methods used in previous articles. 18,19

LITERATURE CITED

- 1 International Critical Tables, McGraw-Hill Book Co., Inc., New York
- ² Stull D. H., Industrial and Engineering Chemistry 39, pp. 517-550 (April 1947).
- Timmermans, J., Physico-Chemical Constants of Pure Organic Compounds, Elsevier Publishing Co., Inc., New York (1950).
 Russel, H., et al, Journal of the American Chemical Society 64, pp. 165-9 (1942).

- (1942).

 McCullough, J. P., et al, *Ibid.* 74, pp. 2801-4 (1952).

 Osborne, D. W., et al, *Ibid.* 64, pp. 169-72 (1942).

 Thompson, H. W., and J. W. Linnett, Transactions of the Faraday Society 31, pp. 1743-7 (1935).
- 8 O'Brien, L. J., and W. J. Alford, Industrial and Engineering Data Series 43, pp. 566-10 (1951).
- O'Brien, L. J., and W. J. Alford, Industrial and Engineering Data Series 43, pp. 506-10 (1951).
 Brebach, W. J., and G. Thodos, Chemical and Engineering Data Series 3, pp. 338-41 (1958).
 Kharbanda, P. O., The Industrial Chemist, pp. 134-7 (March 1955).
 Barrow, G. M., and K. S. Pitzer, Industrial and Engineering Chemistry 41, pp. 2737-40 (1949).
 Waddington, G., et al, Journal of Physical Chemistry 66, pp. 1074-7 (1962).
 Gordon, J. S., Journal of Chemical and Engineering Data 6, pp. 390-4 (1961).
 Borrow, O. L., and G. G. Manoy, Journal of The American Chemical Bernard Chemical

- (1961).

 4 Brown, O. L., and G. G. Manov, Journal of The American Chemical Society 59, pp. 500-2 (1937).

 5 Mazur, J., Nature 128, p. 673 (1931).

 5 Bromley, L. A., and C. R. Wilkes, Industrial and Engineering Chemistry 43, (7), pp. 1641-8 (July 1951).

 5 Reid, R. C., and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill Book Co., Inc., New York (1958).

 5 Owens, E. J., and G. Thodos, AlGhE Journal 6 (4), pp. 676-81 (December 1960).

 9 Robbins, L. A., and C. L. Kingrea, American Petroleum Institute, Division
- ¹⁹ Robbins, L. A., and C. L. Kingrea, American Petroleum Institute, Division of Refining 42 (III), pp. 52-61 (1962).

Indexing Terms: Amines-9, Carbon Disulfide-9, Computations-4, Dimethyl Sulfide-9, Ethanethiol-9, Heat-7, Hydrocarbon-9, Liquid Phase-5 Methanethiol-9, Physical Properties-7, Pressure-6, Properties/Characteristics/-7, Sulfides/Inorganic/-9, Temperature-6, Vapor Phase-5.

Text continues on Page 138

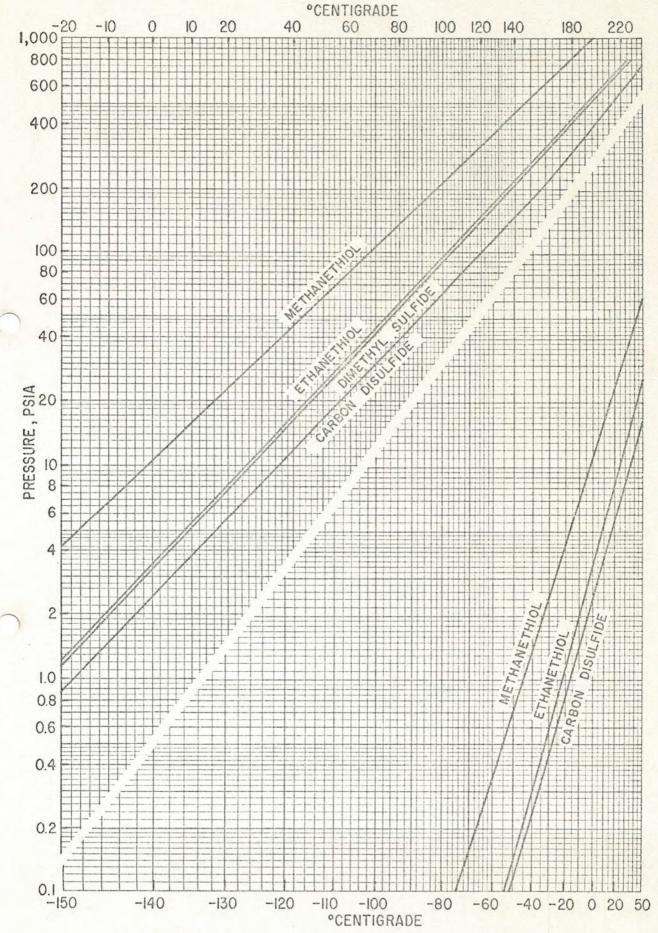


Fig. 44-1—Vapor pressure of sulfur-containing hydrocarbons from -75 to 240°C.

PHYSICAL PROPERTIES OF HYDROCARBONS . . .

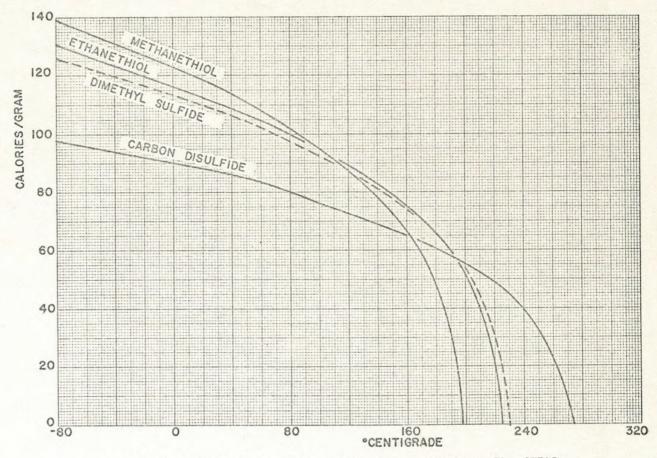


Fig. 44-2—Heat of vaporization of sulfur-containing hydrocarbons from —80 to 275 °C.

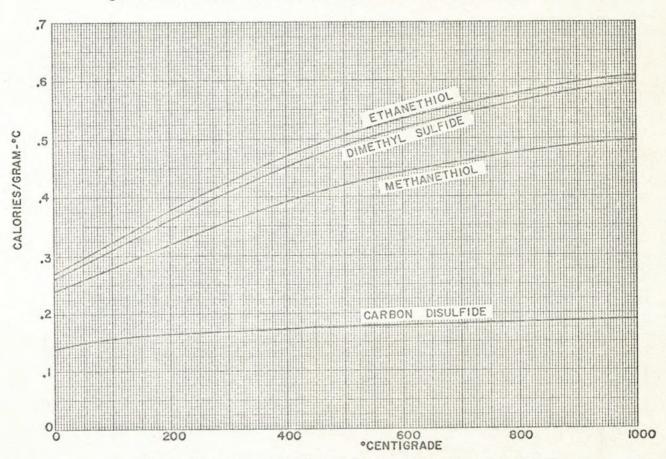


Fig. 44-3—Vapor heat capacity of sulfur-containing hydrocarbons from 0 to 1,000°C.

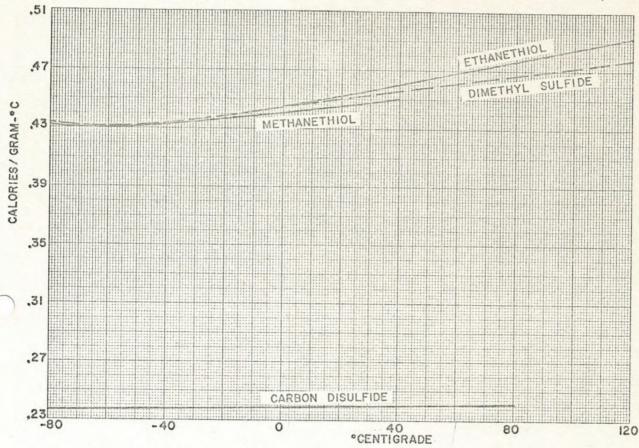


Fig. 44-4—Liquid heat capacity of sulfur-containing hydrocarbons from -80 to 120°C.

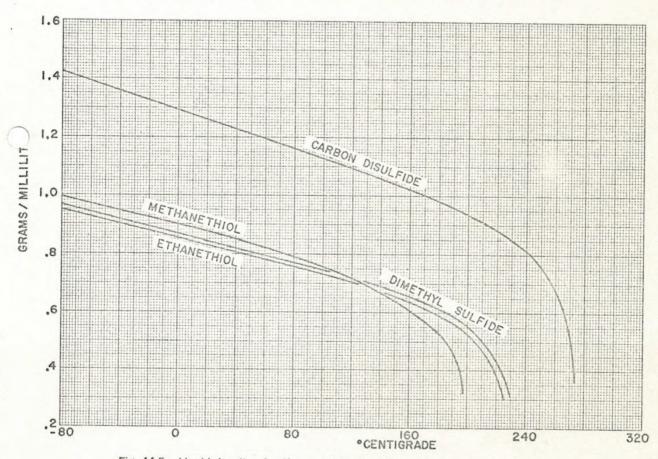


Fig. 44-5—Liquid density of sulfur-containing hydrocarbons from -80 to $275\,^{\circ}\text{C}$.

PHYSICAL PROPERTIES OF HYDROCARBONS . . .

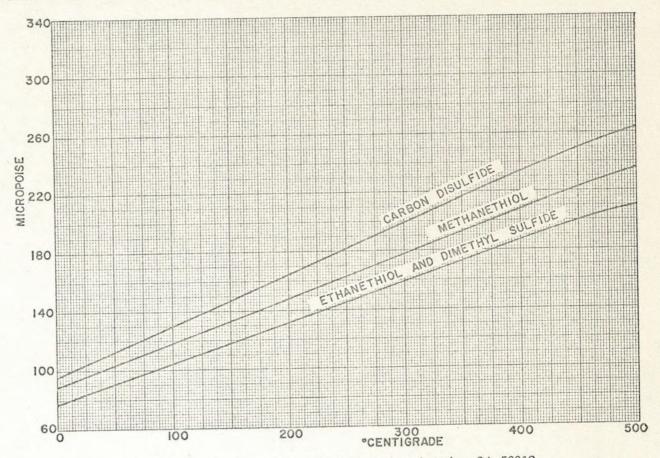


Fig. 44-6—Vapor viscosity of sulfur-containing hydrocarbons from 0 to 500°C.

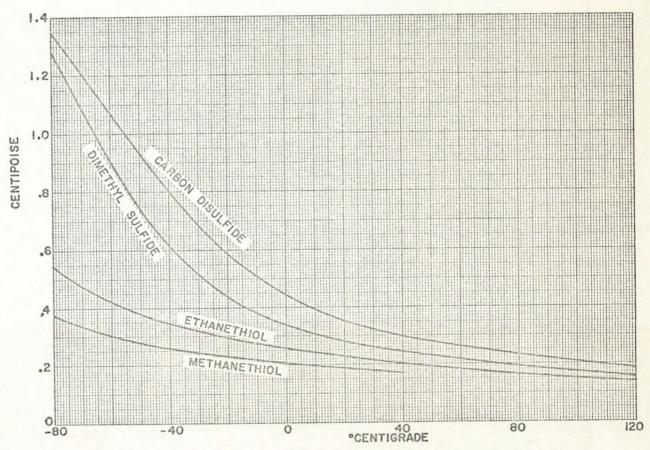


Fig 44-7—Liquid viscosity of sulfur-containing hydrocarbons from —80 to 120°C.

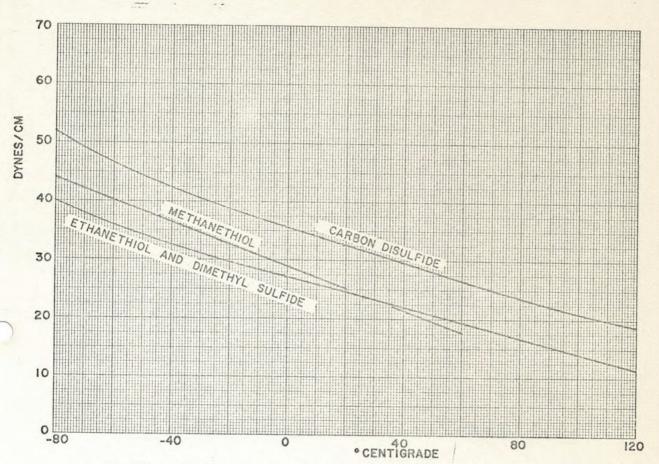


Fig. 44-8—Surface tension of sulfur-containing hydrocarbons from -80 to 120°C.

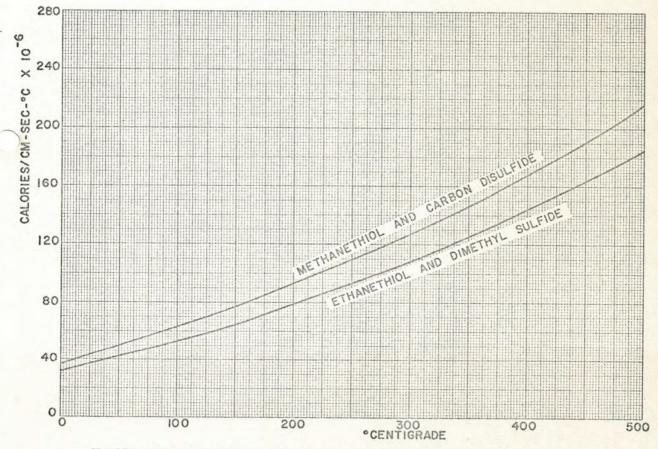


Fig. 44-9—Vapor thermal conductivity of sulfur-containing hydrocarbons from 0 to 500°C.

PHYSICAL PROPERTIES OF HYDROCARBONS . . .

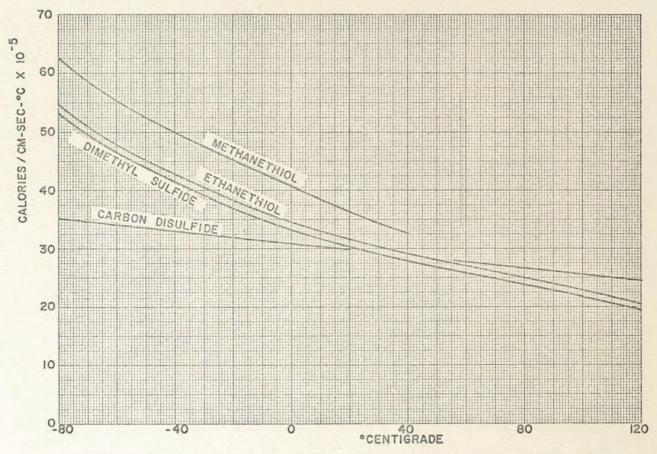


Fig. 44-10—Liquid thermal conductivity of sulfur-containing hydrocarbons from -80 to 120°C.

About This Series

Since the beginning of this series, Mr. Gallant has reported on roughly 150 compounds. For each of these he has given the latest data pertaining to: vapor pressure, critical properties, heat of vaporization, heat capacity, density, viscosity, surface tension and thermal conductivity. Both the liquid and gas phases have been covered. Where possible, experimental data are reported. When experimental data were not available, correlations were used. In most cases, estimates have been included as to the accuracy of the correlations used. Most parts were prefaced by a short section dealing with pertinent market data concerning the compounds covered.

Complete Index to "Physical Properties of Hydrocarbons"

Part No.	Subject	Month, Year
1	Methane-Ethane-Propane-Butane	July 1965
2	C2 to C4 Monoolefins	Aug. 1965
3	C2 to C4 Alkynes	Sept. 1965
4	C2 to C4 Diolefins	Oct. 1965
5	Chlorinated Methanes	March 1966
6	Chlorinated Ethylenes	June 1966
7	Chlorinated Aliphatics	July 1966
8	Primary Alcohols	Oct. 1966
9	Thermal Conductivity of	
	C1 to C4 Hydrocarbons	Dec. 1966
10	C3 to C1 Hydrocarbons	Jan. 1967
11	Miscellaneous Alcohols	Feb. 1967
12	C2 to C4 Oxide	March 1967
13	Ethylene Glycols	April 1967
14	Propylene Glycols and Glycerine	May 1967
15	C5 to C8 Alkanes	July 1967
16	C5 to C8 Alkenes	Aug. 1967
17	C4 to C5 Branched Hydrocarbons	Sept. 1967

Part No.	Subject	Month, Year
18	Cs to Cs Branched Hydrocarbons	Oct. 1967
19	Chlorinated C2 Compounds	Dec. 1967
20	Halogenated Methanes	Jan. 1968
21	Halogenated Hydrocarbons	Feb. 1968
22	Fluorinated Hydrocarbons	March 1968
23	Brominated Hydrocarbons	April 1968
24	C ₁ to C ₄ Aldehydes	May 1968
25	C1 to C4 Acids	June 1968
26	Miscellaneous Aldehydes	July 1968
27	Ketones	Aug. 1968
28	Ethers	Sept. 1968
29	Acetates	Oct. 1968
30	Acrylates	Nov. 1968
31	Esters	Dec. 1968
32	Cyclic Ethers	Jan. 1969
33	Methylamines	April 1969
34	Ethylamines	May 1969
35	Miscellaneous Amines	June 1969
36	Nitriles	July 1969
37	Nitrogen Containing Compounds	Aug. 1969
38	Miscellaneous Nitrogen	
	Compounds	Sept. 1969
39	Benzene Compounds	Nov. 1969
40	Toluene and Xylene	Dec. 1969
41	Cyclic Hydrocarbons	Jan. 1970
42	Miscellaneous Clyclic	
	Compounds	Feb. 1970
43	Halogenated Aromatics	March 1970
44	Sulfur-Containing Hydrocarbons	April 1970

The entire series will soon be available in bardback book form, Volume 1 is already in print and includes Parts 1 through 23. Volume 2 will soon be published to include Parts 24 through 44. Volume 2 will also include a section of physical properties of water. Both volumes are available from Gulf Publishing Co., Book Department, P. O. Box 2608, Houston, Texas 77001.